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Abstract

Volume averaged equations governing unsteady\ laminar\ mixed convection ~ow in an enclosure _lled with a Darcian
~uid!saturated uniform porous medium in the presence of internal heat generation is formulated[ The two vertical walls
of the enclosure are insulated while the horizontal walls are kept at constant temperatures with the top surface is moving
at a constant speed[ The developed equations are nondimensionalized and then solved numerically subject to appropriate
initial and boundary conditions by the _nite!volume approach along with the alternating direct implicit "ADI# procedure[
Comparisons with previously published work are performed and found to be in excellent agreement[ A parametric study
is conducted and a set of graphical results is presented and discussed to elucidate interesting features of the solution[
Þ 0888 Elsevier Science Ltd[ All rights reserved[
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Nomenclature

ai\j coe.cient of _nite di}erence equation at point "i\ j#
in a grid
b right!hand side of _nite di}erence equation
cp ~uid speci_c heat ðJ kg−0 K−0Ł
Da Darcy number\ k:H1

Da−0 inverse Darcy number "0:Da#
g gravitational acceleration ðm s−1Ł
Gr Grashof number\ gbDTH2:n1

H enclosure length ðmŁ
Ke e}ective thermal conductivity of the porous medium
ðW m−0 K−0Ł
M grids number in x!direction
N grids number in y!direction
Nu average Nusselt number\ Nu�Ð0

9 ð"1u:1Y#−Pr Re
V Ł dX
P ~uid pressure ðPaŁ
Pr Prandtl number\ n:ae

q1 volumetric heat generation
Re Reynolds number\ U9H:ne

� Corresponding author[

RaE external Rayleigh number\ gbDTH2:nae

RaI internal Rayleigh number\ gbq1H4:naeKe

t time ðsŁ
T temperature ð>CŁ
u velocity in x!direction
U dimensionless x!component of velocity\ u:U9

Uc dimensionless velocity in x!direction at mid!height
of enclosure
U9 lid velocity
v velocity in y!direction
V dimensionless y!component of velocity\ v:U9

Vc dimensionless velocity in y!direction at mid!width of
enclosure
x\ y Cartesian coordinates
X\ Y dimensionless Cartesian coordinates\ "x\ y#:H[

Greek symbols
ae e}ective thermal di}usivity of porous medium ðm1

s−0Ł
b coe.cient of thermal expansion of ~uid ðK−0Ł
DT temperature di}erence
u dimensionless temperature\ "T−TC#:"TH−TC#
k permeability of the porous medium ðm1Ł
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m e}ective dynamic viscosity ðPa s−0Ł
n e}ective kinematic viscosity\ m:r9

r9 ~uid density at reference temperature TC

t dimensionless time\ tU9:H
c stream function ðm1 s−0Ł
c dimensionless stream function\ c:HU9

v dimensionless vorticity\ VH:U9

V dimensional vorticity\ "1v:1x#−"1u:1y#[

Subscripts
C cold wall
H hot wall
i X location of a grid point
j Y location of a grid point[

0[ Introduction

Mixed convection ~ow and heat transfer in enclosures
is of interest in engineering and science[ Its applications
include nuclear reactors ð0Ł\ lakes and reservoirs ð1Ł\ solar
collectors ð2Ł\ and crystal growth[ Moreover\ the ~ow and
heat transfer in a shear driven cavity arises in industrial
processes such as food processing and ~oat glass pro!
duction ð3Ł[

The problem of a lid!driven cavity ~ow in enclosures
has been used extensively as a standard test case for
the evaluation of numerical solution procedures for the
NavierÐStokes equations ð4Ð09Ł[ Kose} and Street ð00Ł
have studied experimentally as well as numerically the
recirculation ~ow patterns for a wide range of Reynolds
and Grashof numbers[ Their results show that the three!
dimensional features\ such as corner eddies near the end
walls\ and TaylorÐGortler!like longitudinal vortices\
have signi_cant e}ects on the ~ow patterns for low Rey!
nolds numbers[ Both thermally stable and unstable lid!
driven ~ows inside enclosures have been investigated
numerically by Torrance et al[ ð01Ł for _xed values of
Reynolds and Prandtl numbers[ Their numerical results
have indicated that the Richardson number is a con!
trolling parameter for the problem[ Recently\ Prasad and
Kose} ð02Ł have performed an experimental investigation
of a recirculating mixed convection ~ow in a cavity _lled
with water[ For the range of the governing parameters
studied\ their results indicate that the overall heat transfer
rate is a very weak function of the Grashof number for
the examined range of the Reynolds number[ The e}ects
of the Prandtl number on laminar mixed convection heat
transfer in a lid!driven cavity have been considered
numerically by Moallemi and Jang ð03Ł[ Their numerical
simulations have revealed that the in~uence of the buoy!
ancy on the ~ow and heat transfer inside cavities is pre!
dicted to be more pronounced for higher values of the
Prandtl number[ Later on\ Iwatsu et al[ ð04Ł have studied
numerically mixed convection heat transfer in a driven
cavity with a stable vertical temperature gradient[ Their

results have shown that the ~ow features are similar to
those of a conventional driven!cavity of a non!strati_ed
~uid for small values of the Richardson number[ Also\ it
has been found that when the Richardson number is very
high\ much of the middle and bottom portions of the
cavity interior is stagnant[

Flow through a con_ned porous medium has drawn
considerable attention in the last few years due to the
large number of technological and industrial applications
such as geothermal energy systems\ prevention of sub!oil
water pollution\ storage of nuclear waste\ etc[ "see\ for
instance\ Kakak et al[ ð05Ł and Bejan ð06Ł#[ Free con!
vection heat transfer in a porous medium has been
studied extensively in the literature[ Cheng ð07Ł provides
an extensive review of the literature on free convection
in ~uid!saturated porous media with regard to appli!
cations in geothermal systems[ The state of art regarding
porous media models has been summarized in a recent
book by Nield and Bejan ð08Ł[

Early works on ~ow in porous media have used the
Darcy law which is applicable to slow ~ows and does not
account for inertial and boundary e}ects "termed as non!
Darcy e}ects# which become important when the ~ow
velocity is relatively high and in the presence of a bound!
ary[ The condition of high velocity is realized when the
pressure across the porous medium is a quadratic func!
tion of the velocity[ Vafai and Tien ð19Ł have reported a
detailed discussion on these non!Darcian e}ects[ Mixed
convection ~ows along vertical plates and other geo!
metries embedded in porous media with Darcian and
non!Darcian e}ects have been reported by many authors
"e[g[ ð10Ð14Ł#[

The objective of the present work is to consider the
Brinkman!extended Darcy equation of motion with the
convective terms included and to examine the in~uence of
the Richardson number\ Darcy number\ and the internal
Rayleigh number on mixed convection ~ow inside a
square enclosure _lled with a ~uid!saturated porous
medium[ Therefore\ a two dimensional numerical model
will be used to solve the vorticity\ stream function and
energy equations governing buoyancy!driven mixed con!
vection ~ow inside a cavity[

1[ Problem formulation

The physical model considered in this investigation is
shown in Fig[ 0[ A two!dimensional square enclosure of
height H is _lled with a ~uid!saturated porous medium
of uniform porosity and permeability which generates
heat at a uniform rate[ The top surface of the enclosure
is moving from left to right at a constant speed U9[ The
two vertical walls of the enclosure are insulated while the
top lid and the bottom surfaces are maintained at con!
stant temperatures\ TH and TC\ respectively such that
TH×TC[ The directions of the acceleration due to gravity
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Fig[ 0[ Flow con_guration and coordinate system[

g and the coordinate axes are also shown in Fig[ 0[ The
porous medium is assumed to be hydrodynamically and
thermally isotropic and saturated with a ~uid that is in
local thermodynamic equilibrium with the solid matrix[
The ~ow in the above problem is assumed to be unsteady\
laminar\ incompressible\ and the ~uid physical properties
are assumed constant except the density variation in the
body force term of the momentum equation according
to the Boussinesq approximation[ In addition\ pressure
work\ and viscous dissipation are all assumed negligible[

The governing equations of the problem under con!
sideration are based on the balance laws of mass\ linear
momentum\ and thermal energy[ Taking into account the
above mentioned assumptions\ these equations\ ex!
pressed in dimensional form\ can be written as
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where u and v are the pore velocity components in the x!
and y!directions\ respectively[ t is the time\ T is the ~uid
temperature\ P is the ~uid pressure\ b is the volumetric
thermal expansion coe.cient\ k is the permeability of the
porous medium\ and Ke\ n\ m\ r9\ and cp are the e}ective
thermal conductivity of the porous medium\ e}ective
kinematic viscosity\ e}ective dynamic viscosity\ ~uid den!
sity\ and the speci_c heat\ respectively[ q1 is the volu!
metric internal heat generation[ It should be noted that

Eqs[ "1# and "2# do not include the porous medium inertia
e}ects which have been shown by many investigators
such as Lage ð15Ł and Chan et al[ ð16Ł to have very
little e}ect on heat transfer[ This will be in line with the
problem considered herein when the Reynolds number is
small[

The initial and boundary conditions for the above sys!
tem of equations corresponding to the geometry in Fig[
0 can be written as follows]

u � v � 9\ T � 9 at all x\ y and t³9

u � v � 9 on x � 9\ H ^ y � 9\ H

1T
1x

� 9 on x � 9\ H

T � TH on y � H

T � TC on y � 9 for t−9[
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It is convenient to non!dimensionalize Eqs[ "0#Ð"4# using
the following dimensionless variables]
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where c and V are the dimensional stream function and
vorticity\ respectively[

De_ning the stream function c and the vorticity V "see
the nomenclature section# in the usual way and sub!
stituting Eqs[ "5# into the previous governing equations
results in the following dimensionless equations]
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where
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Da �
k

H1
\ Pr �

n

ae

\

RaI �
`bq1H4

naeKe

\ and RaE �
`bDTH2

nae

are the Reynolds number\ Grashof number\ Prandtl num!
ber\ internal Rayleigh number\ and the external Rayleigh
number\ respectively[

The dimensionless initial and boundary conditions of
the problem under consideration can be written as

U � V �C � u � 9 for t � 9

U � V �C � 9 on all boundaries

u � 9 at Y � 9

u � 0 at Y � 0 for t×9[ "00#

Eqs[ "8# and "09# governing v and u can be cast in the
general canonical form "see Patankar ð17Ł# as]
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where f stands for v or u and Gf and Sf are given by
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The average Nusselt number at a given height of the
enclosure may be expressed as

Nu � g
0

9 0
1u

1Y
−Pr Re V1 dX[ "03#

In the above\ the _rst and second terms denote the con!
tributions from the conductive and the convective heat!
transfer modes\ respectively[

2[ Numerical algorithm

In the present work\ the control volume method ð17Ł
is used to solve the transient dimensionless governing
Eqs[ "6#Ð"09# subject to their corresponding initial and
boundary conditions given in Eqs[ "00#[ In this algorithm\
the alternating direct implicit "ADI# procedure along
with the successive grid re_nement scheme are respect!
ively implemented in the spatial and temporal environ!
ments to accelerate the convergence of the solution
towards steady state[ Additionally\ the application of the
ADI procedure enhances the accuracy of the solution
since it allows the power!law scheme to be applied locally
in a one!dimensional sense for each sweep in the coor!
dinate directions[ The _nite!di}erence formulation of the
general Eq[ "01# in both X! and Y!directions\ respectively
are given by]
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"04#

where the subscripts i and j denote the X and Y locations
of the grid point\ respectively[ The superscripts n\ n¦0:1\
and n¦0 denote old time\ advanced half!time step and
advanced full!time step\ respectively[ The coe.cients of
Eqs[ "04# are given by Patankar ð17Ł[ Therefore\ for brev!
ity\ they will not be presented here[

To complete the discretization process\ the ~ow kin!
ematics Eq[ "6# is discretized using central _nite di}erence
with successive over!relaxation "SOR# procedure[ The
_nal form of the equation becomes
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where o is the ratio of the step sizes\ such that o � DX:DY\
n and k are the time step and the iteration step\ respect!
ively\ and l represents the relaxation factor which is given
by

l �
7−3z3−d1

d1
\

d � cos 0
p

M1¦sin 0
p

N1 "06#

where M and N are the total number of grid points along
the X! and Y!directions\ respectively[ Once cn¦0

i\j is calcu!
lated from Eq[ "05#\ Un¦0

i\j \ Vn¦0
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In addition to the distributions of U and V\ the vorticity
on the boundaries can be computed according to the
following expressions which are obtained from Eq[ "6#]
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3[ Solution procedure

0[ Use the temperatures of the previous time step as
an initial guess[ For the _rst time step\ the initial
temperature will be used to initiate the numerical
computation[

1[ Choose the trial values for Un and Vn as the _rst
approximations of Un¦0 and Vn¦0[

2[ Compute the new values of the temperature at each
grid point using Eq[ "04# with f playing the role of u[

3[ Use the values of the vorticities of the previous time
step as initial guesses[ For the _rst time step\ the
vorticities are assumed to be zero everywhere to
initiate the solution[

4[ Use the values of Un¦0\ Vn¦0 and un¦0 to compute the
values of vn¦0 from Eq[ "04# at the interior grid
points[

5[ Solve the stream function Eq[ "05# using the new
values of the vorticities obtained in step "4# above[

6[ Determine the new values of Un¦0 and Vn¦0 from the
values of cn¦0 using the central di}erence formulae
given by Eqs[ "07#[

7[ Compute the new boundary vorticities using the
values of cn¦0 according to Eqs[ "08#[

8[ Use the new values of Un¦0 and Vn¦0 to repeat steps
"4# through "7#[ Check the solution convergence of
vn¦0 and un¦0 and if not converged\ repeat steps
"4#Ð"7#[

09[ Repeat steps "3#Ð"8# for advancing time levels until
steady!state convergence is achieved[

To test and assess grid independence of the solution
scheme\ many numerical experiments were performed[
These experiments showed that an equally spaced grid
mesh of 70×70 is adequate to describe the ~ow and
heat transfer processes correctly[ Further increase in the
number of grid points produced essentially the same
results[ Fig[ 1 shows the grid dependence of the pre!
dictions for Re � 399 and Da � 9[0[ It can be seen from
this _gure that by using lower than 70×70 grids the
solutions for the velocity and temperature pro_les are
dependent on the mesh size[ However\ for mesh sizes
greater than or equal to 70×70 the same results are
produced[ The convergence criterion employed to reach
the steady!state solution was the standard relative error
which is based on the maximum norm given by

D �
>Vn¦0−Vn>�

>Vn¦0>�

¦
>un¦0−un>�

>un¦0>�

¾09−5 "19#

where the operator >h>� indicates the maximum absolute
value of the variable over all the grid points in the com!
putational domain[

4[ Validation tests

In order to verify the accuracy of the present numerical
study\ the present numerical procedure was validated by

performing simulations for isothermal ~ow in a vertical
square cavity with a driving lid for Reynolds number
Re � 0999 and Grashof number Gr � 099[ The results
were compared with the _nite!di}erence solution of
Iwatsu et al[ ð04Ł in the absence of the porous medium
and heat generation for Prandtl number Pr � 9[60 as
shown in Fig[ 2[ This comparison reveals good agreement
between the two numerical solutions[ Moreover\ Tables
0 and 1 clearly show a good agreement of the average
Nusselt number measured at the top surface wall and the
maximum values of the horizontal and vertical velocity
components along the mid!sections of the cavity between
the present solution and that of Iwatsu et al[ ð04Ł[ Fur!
thermore\ Fig[ 3 shows that the pro_les of the horizontal
velocity\ temperature\ and the vertical velocity at the mid!
sections of the cavity of the present solution compare
well with those reported by Iwatsu et al[ ð04Ł[ As an
additional check on the accuracy of the results\ the con!
vergence of the numerical solution is checked by per!
forming an overall heat transfer balance inside the cavity[
All of these favorable comparisons lend con_dence in the
accuracy of the numerical results of the present work[

5[ Results and discussion

In this section\ the numerical results for mixed con!
vection heat transfer of a heat!generating ~uid in a lid!
driven cavity _lled with a uniform porous medium are
discussed[ The non!dimensional controlling parameters
for this investigation are the ratio Gr:Re1 "sometimes
called the Richardson number Ri#\ the Darcy number
Da\ and the internal Rayleigh number RaI[ Figs[ 4Ð7 show
typical contour maps of the temperature and streamlines
obtained numerically for various values of the Rich!
ardson and Darcy numbers[ The e}ects of the Darcy
number and the Richardson number are illustrated in
these _gures[ In the absence of the porous medium and
the internal heat generation\ indicated by setting
Da � �\ and RaI � 9\ the value of the Richardson num!
ber provides a measure of the importance of buoyancy!
driven natural convection relative to the lid!driven forced
convection[ For very small values of Ri\ Figs[ 4Ð6 indicate
that the buoyancy e}ect is overwhelmed by the mech!
anical e}ect of the sliding lid and the ~ow features are
similar to those of a driven cavity viscous ~ow of a non!
strati_ed ~uid[ The ~uid ~ow in a two!dimensional lid!
driven cavity is characterized by a primary recirculating
eddy of the size of the cavity generated by the lid and
minor eddies near the bottom corners[ The isotherms are
clustered near the bottom surface of the enclosure "see
Fig[ 6#\ which indicates steep temperature gradients in
the vertical direction in this region[ In the remaining area
of the cavity\ the temperature gradients are weak and this
implies that the temperature di}erences are very small in
the interior region of the cavity due to the vigorous e}ects
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Fig[ 1[ Velocity and temperature pro_les for various mesh sizes at Re�399 and Da�9[0[

of the mechanically!driven circulations[ For large values
of Ri "see Fig[ 7#\ the buoyancy e}ect is dominant and
the streamlines are almost stagnant in the bulk of the
cavity interior except at portions close to the sliding top
wall[

It is interesting to note that\ as the Darcy number
decreases\ the ~ow circulation is progressively inhibited
except at the portion close to the top surface by the ~ow
retarding e}ect of the porous medium[ For very small

values of the Darcy number\ the permeability of the
medium approaches zero causing the ~ow eventually to
cease in the bulk of the cavity[ Also\ Figs[ 4Ð6 indicate
that as Da:9\ the convection heat transfer mechanism
is almost suppressed and the isotherms are nearly parallel
to the horizontal walls indicating that a quasi!conduction
regime is reached[ Moreover\ the vertical temperature
strati_cation is substantially linear in the stagnant bulk
of the interior regions[ This shows that the overall heat
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Fig[ 2[ Comparison of the isotherms between the present prediction and Iwatsu et al[ ð04Ł in the absence of porous medium and internal
heat generation for Re�092 and Gr�091[

Table 0
Comparison of the average Nusselt number at the top surface
between the present solution and that of Iwatsu et al[ ð04Ł for a
vertical cavity at Gr�099

Parameter Present "Nu# Iwatsu et al[ ð04Ł "Nu#

Re�099 1[90 0[83
Re�399 2[80 2[73
Re�0999 5[22 5[22

Table 1
Comparison of the maximum and minimum values of the horizontal and vertical velocities at the
mid!sections of the cavity between the present solution and those of Iwatsu et al[ ð04Ł for a vertical
cavity at Gr�099 and Reynolds number of 099 and 399\ respectively

Re�099 Re�399

Present Iwatsu et al[ ð04Ł Present Iwatsu et al[ ð04Ł

Umin −9[1011 −9[1926 −9[2988 −9[2086
Umax 0[999 0[999 0[999 0[999
Vmin −9[1495 −9[1337 −9[3252 −9[3348
Vmax 9[0654 9[0588 9[1755 9[1844

is transferred by conduction in the middle and bottom
parts of the cavity except in a relatively small region close
to the top surface where the induced convective activities
are appreciable[ This means that the top plate velocity is
adjusted in the same proportion to the convective velocity
due to the internal heat generation[

The e}ect of internal heat generation on the ~ow pat!
terns and isotherms for a Darcy number Da � 9[0\ Gra!
shof number Gr � 099\ and a Reynolds number
Re � 0999 is shown in Fig[ 8[ If the magnitude of the
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Fig[ 3[ Comparison of the present temperature and velocity
pro_les with Iwatsu et al[ ð04Ł in the absence of porous medium
and internal heat generation for Re�399 and Gr�091[

internal Rayleigh number RaI is increased\ the boundary
layer is well established along the top and the bottom
walls of the enclosure indicating sharp drops in the tem!
perature near the horizontal walls[ In addition\ the iso!
therm plot indicates a localized region of high tem!

perature "relative to the hot wall temperature# between
the hot and cold surfaces[ It can be seen from this _gure
that the streamlines remain unchanged since they are
controlled by the value of the Richardson number Ri
which is very small[ This means that the top plate velocity
is adjusted in the same proportion to the convective vel!
ocity due to the internal heat generation[

The e}ect of the Darcy number on the temperature
and velocity pro_les in a vertical cavity for various values
of the Richardson number Ri at mid!sections of the cavity
is depicted in Figs[ 09Ð01[ The presence of a porous
medium within the cavity results in a force opposite to
the ~ow direction which tends to resist the ~ow[ This
causes suppression in the thermal currents of the ~ow[
This is clearly noticed from the horizontal and vertical
velocity pro_les at the center of the cavity as depicted in
Fig[ 09[ Also\ it is observed from Fig[ 01 that as the
Richardson number Ri:�\ the interior ~uid is at rest
and the corresponding temperature variation is linear
indicating a conduction regime[ On the other hand\ when
the buoyancy e}ect is minor\ i[e[ RiW0\ most of the
temperature variations are concentrated in narrow strips
adjacent to the top and bottom lids[ In the middle regions
of the enclosure\ the temperature variations are very
small[ These regions of almost uniform temperatures cor!
respond to the portions in which the mechanically!
induced activities are appreciable[

Finally\ the e}ects of the inverse Darcy number "0:Da#
and the Richardson number Ri on the average Nusselt
number are shown in Fig[ 02[ As discussed earlier\ for a
small Darcy number the only resistance to the ~ow is due
to the porous medium and the resulting convective heat
transfer is diminished which indicates a pure conduction
regime[ Furthermore\ it is observed from Fig[ 02 that for
a _xed value of the Darcy number\ the average Nusselt
number increases with decreasing values of the Rich!
ardson number[ This implies that the substantial con!
tribution of convective heat transfer in the middle and
upper portions of the cavity is manifest[

6[ A heat transfer correlation

The numerically calculated heat transfer results were
correlated for mixed convection in a vertical cavity and
in the presence of the porous medium[ It can be shown
that the average Nusselt number is correlated as a func!
tion of both the inverse Darcy number "Da−0 � 0:Da#
and the Richardson number "Ri � Gr:Re1# according to
the following equation]

Nu �
0[5953

"0¦Da−0#9[0548
"Ri#−9[0482

for 09−3 ¾ Da ¾ 09−0[ "10#
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Fig[ 4[ Steady!state ~ow patterns and isotherms for various Darcy numbers at Ri�09−1 and RaI�9[
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Fig[ 5[ Steady!state ~ow patterns and isotherms for various Darcy numbers at Ri�5[14×09−3 and RaI�9[
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Fig[ 6[ Steady!state ~ow patterns and isotherms for various Darcy numbers at Ri�09−3 and RaI�9[
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Fig[ 7[ Steady!state ~ow patterns and isotherms for various Darcy numbers at Ri�09 and RaI�9[
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Fig[ 8[ Steady!state ~ow patterns and isotherms for various internal Rayleigh numbers at Da�9[0 and Ri�09−3[
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Fig[ 09[ Velocity pro_les at mid!sections of the cavity for various Da and Ri at RaI�9[
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Fig[ 00[ Temperature pro_les at mid!sections of the cavity for various Da and Ri at RaI�9[

7[ Conclusions

The problem of unsteady mixed convective ~ow and
heat transfer of a heat!generating ~uid in a driven!lid
cavity _lled with a ~uid!saturated porous medium was
formulated and solved numerically[ The _nite!volume
approach was employed along with the alternating direc!
tion implicit "ADI# scheme for the present problem[
Comparisons with previously published work on special
cases of the problem were performed and found to be in

good agreement[ Graphical results for various parametric
conditions were presented and discussed[ It was found that
the heat transfer mechanisms and the ~ow characteristics
inside the cavity are strongly dependent on the Richardson
number[ Also\ signi_cant suppression of the convective
currents was obtained by the presence of a porousmedium[
Moreover\ the presence of the internal heat generation in
the model was found to have signi_cant in~uence on the
features of the isotherms and slight e}ects on the stream!
lines for small values of the Richardson number[
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Fig[ 01[ E}ect of Ri on the temperature and velocity pro_les at mid!sections of the cavity for Da�9[0 and RaI�9[

Fig[ 02[ E}ect of Ri on the average Nusselt number for various Darcy numbers at RaI�9[
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